FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment
نویسندگان
چکیده
The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.
منابع مشابه
Modification of flow and compressibility of corn starch using quasi-emulsion solvent diffusion method
Objective(s):The aim of this study was to improve flowability and compressibility characteristics of starch to use as a suitable excipient in direct compression tabletting. Quasi-emulsion solvent diffusion was used as a crystal modification method. Materials and Methods: Corn starch was dissolved in hydrochloric acid at 80˚C and then ethanol as a non-solvent was added with lowering temperature ...
متن کاملModeling and production of high strength Al strips by equal channel multi angular pressing method
Equal channel multi angular pressing (ECMAP) process is the efficient method to enhance the productivity of ultra-fine grained (UFG) materials, by increasing process continuity and as a result decreasing process required time. Comparing repetitive ECAP method, in the same period, the number of passes can be done by ECMAP. In this article, ECMAP of AL strips in two typical annealed and as receiv...
متن کاملProducing the titanium nano composite statically compacted with the different pressure and investigation of the mechanical properties
Building the Nano composites for getting material with combinational properties and improving properties of currently used material has been taken significant attention. One of the ways of building Nano composites is using a method known as powder metallurgy. Because with this method not only wastes are decreased to minimum but we can also mix the materials with high melting point with the mate...
متن کاملModeling and optimization of precipitation hardening heat treatment factors of Al2024 alloy using a two-level full factorial design
In the current study, the sources of variation in the mean hardness value of heat treated aluminum 2024 samples were identified by using metallurgical study and design of experiment methodology (full factorial method). Hardness measurements and microstructural investigations of the samples were carried out using Brinell hardness test and optical microscopy, respectively. The effects of several ...
متن کاملStatic Strain Aging Behavior of Low Carbon Steel Drawn Wire
The static strain aging is a phenomenon that can change the mechanical properties of low carbon steels. Thus, the static strain aging behavior of low carbon steel wires after drawing process is studied. To do so, the wires are austenitized at different temperatures and cooled in different rates. Then the wires are drawn and aged at a specific temperature and time. Before and after aging of each...
متن کامل